Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmacol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmacology and Experimental Therapeutics
Article . 1986 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of ethanol on stimulated inositol phospholipid hydrolysis in rat brain.

Authors: R A, Gonzales; C, Theiss; F T, Crews;

Effects of ethanol on stimulated inositol phospholipid hydrolysis in rat brain.

Abstract

The effect of ethanol in vitro on inositol lipid metabolism in brain slices was investigated under nonstimulating and stimulating conditions. In cerebral cortical slices 100 microM norepinephrie (NE), 1 mM carbachol, 100 microM serotonin, 20 mM KCl, 1 mM glutamate and 30 microM A23187 stimulated inositide hydrolysis as measured by the release of [3H]inositol phosphates from [3H]myoinositol labeled slices. Ethanol (500 mM) inhibited nonstimulated inositide hydrolysis but had variable effects on stimulated inositide breakdown. NE-, KCl- and glutamate-stimulated [3H]inositol phosphate release was inhibited by 500 mM ethanol in the cortex. The inhibitory effect of ethanol on NE-stimulated inositide hydrolysis was concentration dependent and significant at concentrations as low as 100 mM. Inhibition by ethanol appeared to be noncompetitive. A similar pattern of inhibition by ethanol was observed when KCl was the stimulant. In hippocampal and hypothalamic slices, similar to cortical slices. NE- and KCl-stimulated inositide breakdown was significantly inhibited by ethanol. However, in brain stem slices, only KCl-stimulated [3H]inositol phosphate release was inhibited. Striatal slices stimulated by carbachol, NE and KCl were sensitive to the inhibitory effects of ethanol on inositol lipid breakdown. These results suggest that ethanol in vitro has specific effects on inositol lipid metabolism depending on the brain region studied and the type of stimulation. Moreover, the differential sensitivity to ethanol of stimulated inositide hydrolysis in the brain may contribute, at least in part, to some of the pharmacological effects of ethanol in vivo.

Related Organizations
Keywords

Brain Chemistry, Male, Brain Mapping, Ethanol, Inositol Phosphates, Brain, In Vitro Techniques, Phosphatidylinositols, Rats, Norepinephrine, Potassium, Animals, Sugar Phosphates

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Average
Top 10%
Top 10%