
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recent advances in electrochromics for smart windows applications

Electrochromic smart windows are able to vary their throughput of radiant energy by low-voltage electrical pulses. This function is caused by reversible shuttling of electrons and charge balancing ions between an electrochromic thin film and a transparent counter electrode. The ion transport takes place via a solid electrolyte. Charge transport is evoked by a voltage applied between transparent electrical conductors surrounding the electrochromic film/electrolyte/counter electrode stack. This review summarizes recent progress concerning (i) calculated optical properties of crystalline WO3, (ii) electrochromic properties of heavily disordered W oxide and oxyfluoride films produced by reactive magnetron bias sputtering, (iii) novel transparent reactively sputter deposited Zr-Ce oxide counter electrodes, and (iv) a new proton-conducting antimonic-acid-based polymer electrolyte. Special in-depth presentations are given on elastic light scattering from W-oxide-based films and of electronic bandstructure effects affecting opto-chronopotentiometry data in Zr-Ce oxide. The review also contains some new device data for an electrochromic smart window capable of very high optical transmittance.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).278 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
