Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2000
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Surface Science
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2000
Data sources: IRIS Cnr
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Highly ordered growth of α-quaterthiophene films by seeded supersonic molecular beam deposition: a morphological study

Authors: Podestà; A a; Toccoli; T b; Milani; P c; Boschetti; +3 Authors

Highly ordered growth of α-quaterthiophene films by seeded supersonic molecular beam deposition: a morphological study

Abstract

It is shown that morphology and structure of films of oligothiophenes can be controlled well via supersonic molecular beam epitaxy (SuMBE). The supersonic expansion of oligomers seeded in inert gases makes it possible to tune beam parameters such as kinetic and internal energy, momentum and flux in a range that is shown to play a critical role in the morphology of the surface of the films. By simply varying the seeding in the source, we change the initial state of the oligomers in the beam. In this way, very different morphologies are obtained, ranging from a dendritic-like, typical of a disordered growth, to ordered layered structures. In this case the terraces observed were characterized by widths on a micron scale and height equal to the molecular length. This last morphology, studied by Atomic Force Microscopy in the tapping mode, is consistent with X-ray diffraction data and the optical response of the same films. These properties are maintained up to unprecedented film thicknesses (>=500 nm).

Country
Italy
Keywords

Atomic force microscopy, atomic force microscopy ; growth ; molecular beam epitaxy ; surface structure, morphology, roughness, and topography ; X-ray scattering defraction and reflection, Deposition, Kinetic energy, Molecular beam epitaxy, Molecular structure

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Top 10%
Related to Research communities
Energy Research