
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Estimation of biomass and specific growth rate in a recombinant Escherichia coli batch cultivation process using a chemical multisensor array

pmid: 9571802
A chemical multisensor array is used in combination with an artificial neural network to estimate the biomass concentration and specific growth rate in a recombination Escherichia coli batch cultivation. It is shown that by providing sufficient information to the artificial neural network, an accuracy comparable to that of an established dry weight method can be achieved. The obtained prediction error (1 sigma) of 0.043 g l-1 for biomass compares well with the error of the dry weight method in this low biomass concentration range (0.1-3 g l-1). The prediction for the specific growth rate is accurate during important parts of the cell growth (1 sigma = 0.025 h-1). The results show that this non-invasive method is potentially useful for estimating biomass and specific growth rate on-line in bioprocesses.
- Linköping University Sweden
Time Factors, Ethanol, DNA, Recombinant, Hydrocarbons, Ammonia, Fermentation, Escherichia coli, Biomass, Gases, Neural Networks, Computer, Hydrogen
Time Factors, Ethanol, DNA, Recombinant, Hydrocarbons, Ammonia, Fermentation, Escherichia coli, Biomass, Gases, Neural Networks, Computer, Hydrogen
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
