Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Ec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEMS Microbiology Ecology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals

Authors: Andy F. S. Taylor; Roger D. Finlay; Björn D. Lindahl; Anna Rosling;

Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals

Abstract

A colorimetric method was developed to permit semi-quantitative measurement of substrate acidification by different ectomycorrhizal and one saprotrophic fungus growing on media containing one of five different minerals. Overall, substrate acidification differed between fungal species and the degree of variation in acidification in response to different minerals was highly species-dependent. Mycena galopus and Cortinarius glaucopus produced the least biomass of all tested species and produced the highest amount of acidification per unit mycelial density. Substrate acidification by C. glaucopus was inversely related to mycelial density, with particularly high acidification at low mycelial density on medium enriched with tri-calcium phosphate. Substrate acidification by M. galopus was constant irrespective of mycelial density and varied only according to mineral treatment, with higher substrate acidification on tri-calcium phosphate compared to the other minerals.

Keywords

Calcium Phosphates, Cortinarius, Minerals, Mycelium, Potassium Compounds, Quartz, Hydrogen-Ion Concentration, Culture Media, Species Specificity, Apatites, Mycorrhizae, Image Processing, Computer-Assisted, Aluminum Silicates, Biomass, Agaricales

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    96
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
96
Top 10%
Top 10%
Top 10%
gold