
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Measuring spatially resolved gas transport and adsorption in coal using MRI

pmid: 11445356
The storage and transport of gases in coal is of tremendous importance in the utilisation of coalbeds, and in particular the recovery of methane. There is also increasing interest in the use of coal mines as sites for carbon dioxide sequestration to alleviate the potentially harmful effects of global warming. This paper demonstrates the use of magnetic resonance imaging to investigate the spatiotemporal dynamics of gas transport in coal. The presence of significant structural heterogeneities in the coal was observed. Dynamical effects displayed a broad range of time constants ranging from minutes to days.
- Nottingham Trent University United Kingdom
Fluorine, Carbon Dioxide, Coal Mining, Magnetic Resonance Imaging, Absorption, Coal, Methane
Fluorine, Carbon Dioxide, Coal Mining, Magnetic Resonance Imaging, Absorption, Coal, Methane
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
