
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biomass gasification in a circulating fluidized bed

Abstract This paper presents the results from biomass gasification tests in a pilot-scale (6.5-m tall × 0.1-m diameter) air-blown circulating fluidized bed gasifier, and compares them with model predictions. The operating temperature was maintained in the range 700–850°C, while the sawdust feed rate varied from 16 to 45 kg/h . Temperature, air ratio, suspension density, fly ash re-injection and steam injection were found to influence the composition and heating value of the product gas. Tar yield from the biomass gasification decreased exponentially with increasing operating temperature for the range studied. A non-stoichiometric equilibrium model based on direct minimization of Gibbs free energy was developed to predict the performance of the gasifier. Experimental evidence indicated that the pilot gasifier deviated from chemical equilibrium due to kinetic limitations. A phenomenological model adapted from the pure equilibrium model, incorporating experimental results regarding unconverted carbon and methane to account for non-equilibrium factors, predicts product gas compositions, heating value and cold gas efficiency in good agreement with the experimental data.
- Huazhong University of Science and Technology China (People's Republic of)
- ITRI International United States
- University of British Columbia Canada
- ITRI International United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).632 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 0.1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
