Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Petroleum Exploratio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Petroleum Exploration and Development
Article . 2014 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Petroleum Exploration and Development
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Formation, distribution, resource potential, and discovery of Sinian–Cambrian giant gas field, Sichuan Basin, SW China

Authors: Hua Jiang; Caineng Zou; Gen-shun Yao; Shenghui Deng; Tongshan Wang; Baomin Zhang; Hui Zhou; +8 Authors

Formation, distribution, resource potential, and discovery of Sinian–Cambrian giant gas field, Sichuan Basin, SW China

Abstract

The Anyue Sinian–Cambrian giant gas field was discovered in central paleo-uplift in the Sichuan Basin in 2013, which is a structural-lithological gas reservoir, with 779.9 km2 proven gas-bearing area and 4 403.8×108 m3 proven geological reserves in the Cambrian Longwangmiao Formation in Moxi Block, and the discovery implies it possesses trillion-cubic-meter reserves in the Sinian. Cambrian Formations in Sichuan Basin. The main understandings achieved are as follows: (1) Sinian–Cambrian sedimentary filling sequences and division evidence are redetermined; (2) During Late Sinian and Early Cambrian, “Deyang–Anyue” paleo-taphrogenic trough was successively developed and controlled the distribution of source rocks in the Lower-Cambrian, characterized by 20–160 m source rock thickness, TOC 1.7%–3.6% and Ro 2.0%–3.5%; (3) Carbonate edge platform occurred in the Sinian Dengying Formation, and carbonate gentle slope platform occurred in the Longwangmiao Formation, with large-scale grain beach near the synsedimentary paleo- uplift; (4) Two types of gas-bearing reservoir, i.e. carbonate fracture-vug type in the Sinian Dengying Formation and dolomite pore type in the Cambrian Longwangmiao Formation, and superposition transformation of penecontemporaneous dolomitization and supergene karst formed high porosity-permeability reservoirs, with 3%–4% porosity and (1–6)×10−3 μm2 permeability in the Sinian Dengying Formation, and 4%–5% porosity and (1–5)×10−3 μm2 permeability in the Cambrian Longwangmiao Formation; (5) Large paleo-oil pool occurred in the core of the paleo-uplift during late Hercynian—Indosinian, with over 5 000 km2 and (48–63)×108 t oil resources, and then in the Yanshanian period, in-situ crude oil cracked to generate gas and dispersive liquid hydrocarbons in deep slope cracked to generate gas, both of which provide sufficient gas for the giant gas field; (6) The formation and retention of the giant gas field is mainly controlled by paleo-taphrogenic trough, paleo-platform, paleo-oil pool cracking gas and paleo-uplift jointly; (7) Total gas resources of the Sinian–Cambrian giant gas field are preliminarily predicted to be about 5×1012 m3, and the paleo-uplift and its slope, southern Sichuan Basin depression and deep formations of the high and steep structure belt in east Sichuan, are key exploration plays. The discovery of deep Anyue Sinian–Cambrian giant primay oil-cracking gas field in the Sichuan Basin, is the first in global ancient strata exploration, which is of great inspiration for extension of oil & gas discoveries for global middle-deep formations from Lower Paleozoic to Middle–Upper Proterozoic strata. Key words: Sichuan Basin, Anyue gas field, Fuling shale gas field, paleo-taphrogenic trough, paleo-oil pool, paleo-uplift, carbonate platform, unconventional oil and gas, shale gas, Weiyuan shale gas field

Keywords

Petroleum refining. Petroleum products, TP690-692.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    334
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
334
Top 0.1%
Top 1%
Top 1%
gold