
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
More stressful event does not always depress subsequent life performance

Climate change has led to a substantial increase in intensity and duration of heat waves worldwide. Predicting the ecological impacts of hot events should incorporate both immediate and potential carry-over effects in different intensities of heat waves. Previous studies suggested that higher heat dose in early life stage of insect generally decreased immediate survival and depressed adult reproduction through carry-over effects, or unchanged adult performance through recovery effects. However, our previous study showed a different pattern, in which longer heat exposures in larval stage did not always decrease but sometimes increase the subsequent adult maturation success in the diamondback moth. We speculated that it might be another important pattern in the carry-over effects vs. heat dose, and conducted experiments using a global pest, Plutella xylostella. Our present results suggested that heat exposures in early life stage reduced the immediate survival and produced general declines with significant zigzag fluctuating patterns in subsequent body size and reproduction as exposure durations increased. The similar patterns were also validated in other insect taxa and other stresses by reanalyzing the experiment data from literatures. The finding highlights the importance for differentiating the biological effects and consequences of changes in heat dose at fine scales; daily exposure hours of a hot day should be considered to predict population dynamic under climate change.
- State Key Laboratory of Biology of Plant Diseases and Insect Pests China (People's Republic of)
- Institute of Plant Protection China (People's Republic of)
- Chinese Academy of Agricultural Sciences China (People's Republic of)
- State Key Laboratory of Biology of Plant Diseases and Insect Pests China (People's Republic of)
Agriculture (General), extreme temperature, S1-972, reproduction, climate change, Plutella xylostella, carry-over effect
Agriculture (General), extreme temperature, S1-972, reproduction, climate change, Plutella xylostella, carry-over effect
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
