Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal Of N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
OpenUCT
Article . 2010
Data sources: OpenUCT
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal Of Nutrition
Article . 2009 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of body fatness measurements by near-infrared reactance and dual-energy X-ray absorptiometry in normal-weight and obese black and white women

Authors: Jennings, Courtney L; Micklesfield, Lisa K; Lambert, Mike I; Lambert, Estelle V; Collins, Malcolm; Goedecke, Julia H;

Comparison of body fatness measurements by near-infrared reactance and dual-energy X-ray absorptiometry in normal-weight and obese black and white women

Abstract

The aim of the present study was to compare body fat percent (BF %) using single-site near-IR reactance (NIR) and dual-energy X-ray absorptiometry (DXA) in a cohort of normal-weight (BMI < 25 kg/m2) black (n 102) and white (n 71); and obese (BMI ≥ 30 kg/m2) black (n 117) and white (n 41) South African women (18–45 years). NIR-derived BF % was significantly correlated with DXA-derived BF % in all groups: normal-weight black (r 0·55, 95 % CI: 0·40, 0·67, P < 0·001) and white (r 0·69, 95 % CI: 0·53, 0·79, P < 0·001) women; obese black (r 0·59, 95 % CI: 0·46, 0·70, P < 0·001) and white (r 0·56, 95 % CI: 0·30, 0·74, P < 0·001) women. NIR under-predicted BF% compared to DXA in black women (normal-weight, − 4·36 (sd 4·13) % and obese, − 3·41 (sd 3·72) %), while smaller mean differences were observed in white women (normal-weight, − 0·29 (sd 4·19) % and obese, − 0·81 (sd 3·09) %), irrespective of normal-weight or obese status (P < 0·001). In obese subjects, NIR-derived BF % did not measure values greater than approximately 45 %, while the maximum DXA-derived measure was 58 %. In conclusion, although there was a significant relationship between NIR- and DXA-derived BF %, NIR under-predicted BF % in normal-weight and obese black South African women compared to DXA, but to a greater extent in subjects with very high levels of adiposity (>45 %). The results of single-site NIR as a measure of BF % should therefore be interpreted with caution, particularly in women of African descent and in those with very high levels of adiposity.

Country
South Africa
Keywords

Adult, Blanc, Adolescent, Infrared Rays, Black People, White, Rayon X, Body composition, Homme, White People, South Africa, Young Adult, Normal, Dual energy absorptiometry, Absorptiométrie biphotonique, Absorptiometry, Photon, Nutritional status, Reference Values, Ethnicity, Humans, Poids, Obésité, Obesity, Composition corporelle, Adiposity, Vertebrata, Dual-energy X-ray absorptiometry, Noir, Spectrum Analysis, Etat nutritionnel, Femelle, Middle Aged, Weight, X ray, Adipose Tissue, Black, Mammalia, Female, Comparative study, Nutrition disorder, Human

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 10
  • 5
    views
    10
    downloads
    Data sourceViewsDownloads
    OpenUCT510
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
7
Average
Average
Average
5
10
Green
bronze
Related to Research communities
Energy Research