Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mycological Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mycological Research
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular and biochemical evidence for manganese-dependent peroxidase activity in Tylospora fibrillosa

Authors: John W.G. Cairney; R.M. Burke; P.R. Brooks; Susan M. Chambers;

Molecular and biochemical evidence for manganese-dependent peroxidase activity in Tylospora fibrillosa

Abstract

Gel-based and spectrophotometric assays were used to demonstrate expression of a manganese-dependent peroxidase (MnP) activity in culture filtrates of the ectomycorrhizal basidiomycete Tylospora fibrillosa. PCR amplification using a primer pair specific for a 260 bp fragment from the 5′-end of a gene encoding an H3-like MnP isozyme in Phanerochaete chrysosporium, produced single amplification products of 260 bp from DNA extracted from two isolates of T. fibrillosa. The amplified fragment from T. fibrillosa had a 93.7% nucleotide overlap (over 201 bases) with a published sequence for a 260 base amplification product from the P. chrysosporium H3 MnP isozyme gene, strongly suggesting the presence of a homologous gene in the ectomycorrhizal fungus. The results are discussed in the context of lignin degradation by ectomycorrhizal fungi.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%