
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Defect Segregation and Its Effect on the Photoelectrochemical Properties of Ti-Doped Hematite Photoanodes for Solar Water Splitting

Optimising the photoelectrochemical performance of hematite photoanodes for solar water splitting requires better understanding of the relationships between dopant distribution, structural defects and photoelectrochemical properties. Here, we use complementary characterisation techniques including electron microscopy, conductive atomic force microscopy (CAFM), Rutherford backscattering spectroscopy (RBS), atom probe tomography (APT) and intensity modulated photocurrent spectroscopy (IMPS) to study this correlation in Ti-doped (1 cat.%) hematite films deposited by pulsed laser deposition (PLD) on F:SnO2 (FTO) coated glass substrates. The deposition was carried out at 300 ��C, followed by annealing at 500 deg C for 2 h. Upon annealing, Ti was observed by APT to segregate to the hematite/FTO interface and into some hematite grains. Since no other pronounced changes in microstructure and chemical composition were observed by electron microscopy and RBS after annealing, the non-uniform Ti redistribution seems to be the reason for a reduced interfacial recombination in the annealed films, as observed by IMPS. This results in a lower onset potential, higher photocurrent and larger fill factor with respect to the as-deposited state. This work provides atomic-scale insights into the microscopic inhomogeneity in Ti-doped hematite thin films and the role of defect segregation in their electrical and photoelectrochemical properties.
- Max Planck Society Germany
- Ruhr-Universität Bochum Germany
- hsg Bochum - University of Applied Sciences Germany
- Technion Israel Institue of Technology Israel
- Max Planck Institute for Heart and Lung Research Germany
Chemical Physics (physics.chem-ph), Physics - Chemical Physics, FOS: Physical sciences
Chemical Physics (physics.chem-ph), Physics - Chemical Physics, FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
