
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical Study on the Autoignition of Biogas in Moderate or Intense Low Oxygen Dilution Nonpremixed Combustion Systems

The ignition delay of biogas in mixing layers is investigated using a one-dimensional combustion model, with its application in Moderate or Intense Low oxygen Dilution (MILD) combustion being the focus. The current study reveals the key aspects of the ignition of biogas in a nonpremixed, igniting mixing layer with a hot oxidizer of low oxygen content. The observed characteristics are contrasted against the existing studies on ignition in homogeneous mixtures under similar conditions. Biogas is considered here as a mixture of CH4 with variable amounts CO2. The influence of reactive, thermal, and transport properties of CO2 on the ignition is evaluated using artificial species to mimic the respective characteristics of CO2. While the ignition delay in homogeneous mixtures shows a strong dependence on CO2 content in the fuel, the ignition delay predictions from one-dimensional mixing layers show no significant influence of CO2 levels in biogas. In addition, the influence of oxidizer composition and temperature on ignition delay is determined for CO2 levels ranging from 0% to 90%. A sensitivity analysis of chemical reactions on the ignition delay shows a negligible effect of CO2 concentration in biogas. The current study emphasizes the role of oxidizer composition and temperature on the ignition characteristics of a MILD biogas flame.
- Technical University Eindhoven Netherlands
- Technical University Eindhoven Netherlands
- Eindhoven University of Technology Netherlands
- Technical University Eindhoven TU Eindhoven Research Portal Netherlands
CFD (Computational Fluid Dynamics), Non-premixed combustion, Biogas, Energy Engineering and Power Technology, Fuel Technology, MILD combustion, Chemical Engineering(all), Journal Article
CFD (Computational Fluid Dynamics), Non-premixed combustion, Biogas, Energy Engineering and Power Technology, Fuel Technology, MILD combustion, Chemical Engineering(all), Journal Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
