
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Supercritical Methane Adsorption on Shale over Wide Pressure and Temperature Ranges: Implications for Gas-in-Place Estimation

Supercritical Methane Adsorption on Shale over Wide Pressure and Temperature Ranges: Implications for Gas-in-Place Estimation
Methane adsorption experiments over wide ranges of pressure (up to 30 MPa) and temperature (30-120 °C) were performed using a gravimetric method on the Longmaxi shale collected from the northeast boundary of Sichuan Basin, China. Organic geochemical analyses, shale composition determination, and porosity tests were also conducted. The experimental supercritical methane excess adsorption isotherms at different temperatures initially increase and then decrease with increasing pressure, giving a maximum excess adsorption capacity (Gexm = 1.86-2.87 cm/g) at a certain pressure P (6.71-12.90 MPa). The excess adsorption capacity decreases with increasing temperature below 28 MPa, while this effect reversed above 28 MPa. However, the absolute adsorption capacity decreases as the temperature increases over the full pressure range. Supercritical methane adsorption on shale is of temperature dependence because it is a physical exothermic process supported by calculated thermodynamic parameters. P is positively correlated with the temperature, while the decline rates (0.021-0.058 cm g MPa) in excess adsorption negatively correlate with the temperature. Meanwhile, Langmuir volume G (3.07-4.04 cm/g) decreases while Langmuir pressure P (1.44-4.31 MPa) increases with temperature elevation. In comparison to the actual adsorbed gas (absolute adsorption), an underestimation exists in the excess adsorption calculation, which increases with increasing depth. The conventional method, without subtracting the volume occupied by adsorbed gas, overestimates the actual free gas content, especially for the deep shale reservoirs. In situ adsorbed gas is simultaneously controlled by the positive effect of the reservoir pressure and the adverse effect of the reservoir temperature. Nevertheless, in situ free gas is dominated by the positive effect of the reservoir pressure. Lowerature overpressure reservoirs are favorable for shale gas enrichment. Geological application of gas-in-place estimation shows that, with increasing depth, the adsorbed gas content increases rapidly and then declines slowly, whereas the free gas content increases continuously. There was an equivalence point at which the contents of adsorbed and free gas are equal, and the equivalence point moved to the deep areas with increasing water saturation. Moreover, the adsorbed gas and free gas distribution are characterized by the dominant depth zones, providing the reference for shale gas exploration and development.
- University of Queensland Australia
- University of Queensland Australia
- China University of Mining and Technology China (People's Republic of)
- University of Queensland Australia
- China University of Mining and Technology China (People's Republic of)
660, 2500 Materials Science, Adsorption isotherms, Saturation, Shale, 541, Hydrocarbons, Adsorption
660, 2500 Materials Science, Adsorption isotherms, Saturation, Shale, 541, Hydrocarbons, Adsorption
9 Research products, page 1 of 1
- 1969IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 1991IsAmongTopNSimilarDocuments
- 1968IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2000IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).60 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
