
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Projected Aerosol Changes Driven by Emissions and Climate Change Using a Machine Learning Method

pmid: 35294173
Projection of future aerosols and understanding the driver of the aerosol changes are of great importance in improving the atmospheric environment and climate change mitigation. The latest Coupled Model Intercomparison Project Phase 6 (CMIP6) provides various climate projections but limited aerosol output. In this study, future near-surface aerosol concentrations from 2015 to 2100 are predicted based on a machine learning method. The machine learning model is trained with global atmospheric chemistry model results and projects aerosols with CMIP6 multi-model simulations, creatively estimating future aerosols with all important species considered. PM2.5 (particulate matter less than 2.5 μm in diameter) concentrations in 2095 (2091-2100 mean) are projected to decrease by 40% in East Asia, 20-35% in South Asia, and 15-25% in Europe and North America, compared to those in 2020 (2015-2024 mean), under low-emission scenarios (SSP1-2.6 and SSP2-4.5), which are mainly due to the presumed emission reductions. Driven by the climate change alone, PM2.5 concentrations would increase by 10-25% in northern China and western U.S. and decrease by 0-25% in southern China, South Asia, and Europe under the high forcing scenario (SSP5-8.5). A warmer climate exerts a stronger modulation on global aerosols. Climate-driven global future aerosol changes are found to be comparable to those contributed by changes in anthropogenic emissions over many regions of the world in high forcing scenarios, highlighting the importance of climate change in regulating future air quality.
- Pacific Northwest National Laboratory United States
- Nanjing University of Information Science and Technology China (People's Republic of)
- Pacific Northwest National Laboratory United States
- Nanjing University of Information Science and Technology China (People's Republic of)
Aerosols, Machine Learning, Air Pollutants, Air Pollution, Climate Change
Aerosols, Machine Learning, Air Pollutants, Air Pollution, Climate Change
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
