
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessment of Life Cycle Impacts on Ecosystem Services: Promise, Problems, and Prospects

The analysis of ecosystem services (ES) is becoming a key-factor to implement policies on sustainable technologies. Accordingly, life cycle impact assessment (LCIA) methods are more and more oriented toward the development of harmonized characterization models to address impacts on ES. However, such efforts are relatively recent and have not reached full consensus yet. We investigate here on the transdisciplinary pillars related to the modeling of LCIA on ES by conducting a critical review and comparison of the state-of-the-art in both LCIA and ES domains. We observe that current LCIA practices to assess impacts on "ES provision" suffer from incompleteness in modeling the cause-effect chains; the multifunctionality of ecosystems is omitted; and the "flow" nature of ES is not considered. Furthermore, ES modeling in LCIA is limited by its static calculation framework, and the valuation of ES also experiences some limitations. The conceptualization of land use (changes) as the main impact driver on ES, and the corresponding approaches to retrieve characterization factors, eventually embody several methodological shortcomings, such as the lack of time-dependency and interrelationships between elements in the cause-effect chains. We conclude that future LCIA modeling of ES could benefit from the harmonization with existing integrated multiscale dynamic integrated approaches.
- Vrije Universiteit Amsterdam Netherlands
Environment, Models, Theoretical, Animals, Humans, Ecosystem
Environment, Models, Theoretical, Animals, Humans, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).68 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
