
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
110th Anniversary: Calcium Looping Coupled with Concentrated Solar Power for Carbon Capture and Thermochemical Energy Storage

handle: 11588/779658 , 20.500.14243/364567
110th Anniversary: Calcium Looping Coupled with Concentrated Solar Power for Carbon Capture and Thermochemical Energy Storage
Concentrating solar power (CSP) technologies with energy storage can greatly enhance the dispatchability and the exploitation of solar energy in different applications. In this context, the present study addresses coupling CSP with calcium looping (CaL) along the 2-fold perspective of accomplishing: (a) carbon capture and sequestration or utilization (CCSU); (b) thermochemical energy storage (TCES). The experimental campaign, aimed at assessing limestone performances over extended cycling under realistic operating conditions, was performed in a fluidized bed reactor directly irradiated by a simulator of concentrated solar radiation. Infrared thermography was used to map the fluidized bed surface during "solar-driven" calcination. Experimental results indicated that TCES operating conditions yield a more reactive material due to the development of better microstructural properties, as inferred from N- and Hg-intrusion porosimetry, which reflect the different thermal history experienced by sorbent material. Working out of process variables in terms of density of energy storage revealed that the CSP-CaL integrated process can represent an attractive alternative option to commercial technologies based on molten salts.
energy storage, carbon capture, solar energy
energy storage, carbon capture, solar energy
5 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
