Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physical Chemistry B
Article . 2019 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Picosecond Dynamical Response to a Pressure-Induced Break of the Tertiary Structure Hydrogen Bonds in a Membrane Chromoprotein

Authors: Maksym Golub; Jörg Pieper; Judith Peters; Liina Kangur; Elizabeth C. Martin; C. Neil Hunter; Arvi Freiberg;

Picosecond Dynamical Response to a Pressure-Induced Break of the Tertiary Structure Hydrogen Bonds in a Membrane Chromoprotein

Abstract

We used elastic incoherent neutron scattering (EINS) to find out if structural changes accompanying local hydrogen bond rupture are also reflected in global dynamical response of the protein complex. Chromatophore membranes from LH2-only strains of the photosynthetic bacterium Rhodobacter sphaeroides, with spheroidenone or neurosporene as the major carotenoids, were subjected to high hydrostatic pressure at ambient temperature. Optical spectroscopy conducted at high pressure confirmed rupture of tertiary structure hydrogen bonds. In parallel, we used EINS to follow average motions of the hydrogen atoms in LH2, which reflect the flexibility of this complex. A decrease of the average atomic mean square displacements of hydrogen atoms was observed up to a pressure of 5 kbar in both carotenoid samples due to general stiffening of protein structures, while at higher pressures a slight increase of the displacements was detected in the neurosporene mutant LH2 sample only. These data show a correlation between the local pressure-induced breakage of H-bonds, observed in optical spectra, with the altered protein dynamics monitored by EINS. The slightly higher compressibility of the neurosporene mutant sample shows that even subtle alterations of carotenoids are manifested on a larger scale and emphasize a close connection between the local structure and global dynamics of this membrane protein complex.

Country
France
Keywords

[PHYS.PHYS]Physics [physics]/Physics [physics], Hydrostatic Pressure, Light-Harvesting Protein Complexes, Hydrogen Bonding, Rhodobacter sphaeroides, Bacteriochlorophylls, Carotenoids

Powered by OpenAIRE graph
Found an issue? Give us feedback