Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Applied Materials & Interfaces
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid Li-Ion Capacitor Operated within an All-Climate Temperature Range from −60 to +55 °C

Authors: Yue Yin; Zhong Fang; Jiawei Chen; Yu Peng; Lei Zhu; Congxiao Wang; Yonggang Wang; +2 Authors

Hybrid Li-Ion Capacitor Operated within an All-Climate Temperature Range from −60 to +55 °C

Abstract

Lithium-ion capacitors (LICs) have been considered as an advanced energy storage system owing to their high energy and power densities. However, their application in a wide temperature range is still a great challenge due to the reduced ionic conductivity of the electrolyte and the poor electric conductivity of the battery-type transition metal oxide electrodes. Herein, an all-climate LIC is well-fabricated with TiNb2O7@expanded graphite as the anode and activated carbon as the cathode in an optimized electrolyte, which can be operated within a wide temperature range from -60 to +55 °C. Benefitting from the synergetic effect of the improved electrode and electrolyte, the LIC exhibits an outstanding energy density of 119 W h kg-1 and a power density of 5110 W kg-1 based on the total mass of both negative and positive electrodes. Moreover, it can deliver a capacity retention of as high as 42% at -60 °C and function at a superior rate capability at a high temperature of +55 °C, which exhibits an all-climate feature and the potential for wide applications under some extreme conditions.

Related Organizations
Keywords

climate lic, high energy, Chemical Sciences not elsewhere classified, extreme conditions, wide applications, positive electrodes, reduced ionic conductivity, high temperature, improved electrode, Space Science, superior rate capability, Environmental Sciences not elsewhere classified, power densities, ion capacitors, activated carbon, wide temperature range, − 60, climate feature, operated within, Ecology, power density, great challenge due, outstanding energy density, poor electric conductivity, 5110 w kg, climate temperature range, total mass, synergetic effect, 541, 2 </ sub, hybrid li, Medicine, 55 ° c, capacity retention, Biotechnology, Biological Sciences not elsewhere classified

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%