
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of Salt Concentration on Nonuniform Lithium Electrodeposition through Rigid Block Copolymer Electrolytes

pmid: 31769958
There is a growing demand for higher energy density lithium batteries. One approach for addressing this demand is enabling lithium metal anodes. However, nucleation and growth of electronically conductive protrusions, which cause short circuits, prevent the use of this technology with liquid electrolytes. The use of rigid solid electrolytes such as polystyrene-b-poly(ethylene oxide) electrolytes is one solution. An additional requirement for practical cells is needed to use electrolytes with high salt concentration to maximize the flux of lithium ions in the cell. The first systematic study of the effect of salt concentration on the morphology of electrodeposited lithium through a rigid block copolymer electrolyte is presented. The nature, areal density, and morphologies of defective lithium deposits created during galvanostatic cycling of lithium-lithium symmetric cells were determined using hard X-ray microtomography. Cycle life decreases rapidly with increasing salt concentration. X-ray microtomography reveals the presence of multiglobular protrusions, which are nucleated at impurity particles at low salt concentrations; here, the areal density of defective lithium deposits was independent of salt concentration. At the highest salt concentration, this density increases abruptly by a factor of about 10, and defects were also nucleated at locations where no impurities were visible.
- University of California System United States
- University of California, Berkeley United States
- Lawrence Berkeley National Laboratory United States
- Lawrence Berkeley National Laboratory United States
rechargeable batteries, 600, Materials Engineering, 540, Physical Chemistry, 620, Physical sciences, dendrite morphology, Engineering, Chemical sciences, lithium, Chemical Sciences, polymer electrolyte, salt concentration, Nanoscience & Nanotechnology
rechargeable batteries, 600, Materials Engineering, 540, Physical Chemistry, 620, Physical sciences, dendrite morphology, Engineering, Chemical sciences, lithium, Chemical Sciences, polymer electrolyte, salt concentration, Nanoscience & Nanotechnology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
