Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DLR publication serv...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DLR publication server
Other literature type . 2017
ACS Catalysis
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sulfur Poisoning of Electrochemical Reformate Conversion on Nickel/Gadolinium-Doped Ceria Electrodes

Authors: Riegraf, Matthias; Hoerlein, Michael; Costa, Rémi; Schiller, Günter; Friedrich, Kaspar Andreas;

Sulfur Poisoning of Electrochemical Reformate Conversion on Nickel/Gadolinium-Doped Ceria Electrodes

Abstract

The aim of the present study is the measurement and understanding of sulfur poisoning phe-nomena in Ni/gadolinium-doped ceria (CGO) based solid oxide fuel cells (SOFC) operating on reformate fuels. The sulfur poisoning behavior of commercial, high-performance electro-lyte-supported cells (ESC) with Ni/Ce0.9Gd0.1O2‒(CGO10) anodes operated with different fuels was thoroughly investigated by means of current-voltage characteristics and electro-chemical impedance spectroscopy, and compared with Ni/Yttria-stabilized zirconia (YSZ) anodes. Various methane- and carbon monoxide-containing fuels were used in order to eluci-date the underlying reaction mechanism. The analysis of the cell resistance increase in H2/H2O/CO/CO2 fuel gas mixtures revealed that the poisoning behavior is mainly governed by an inhibited hydrogen oxidation reaction at low current densities. At higher current densities, the resistance increase becomes increasingly large, indicating a particularly severe poisoning effect on the carbon monox...

Country
Germany
Related Organizations
Keywords

anode, Solid oxide fuel cell (SOFC), Elektrochemische Energietechnik, fuel cells, ceria, electrochemistry, Ni/GDC, degradation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Green