
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deep Learning Approach for Robust Prediction of Reservoir Bubble Point Pressure

The bubble point pressure (P b) is a crucial pressure-volume-temperature (PVT) property and a primary input needed for performing many petroleum engineering calculations, such as reservoir simulation. The industrial practice of determining P b is by direct measurement from PVT tests or prediction using empirical correlations. The main problems encountered with the published empirical correlations are their lack of accuracy and the noncomprehensive data set used to develop the model. In addition, most of the published correlations have not proven the relationships between the inputs and outputs as part of the validation process (i.e., no trend analysis was conducted). Nowadays, deep learning techniques such as long short-term memory (LSTM) networks have begun to replace the empirical correlations as they generate high accuracy. This study, therefore, presents a robust LSTM-based model for predicting P b using a global data set of 760 collected data points from different fields worldwide to build the model. The developed model was then validated by applying trend analysis to ensure that the model follows the correct relationships between the inputs and outputs and performing statistical analysis after comparing the most published correlations. The robustness and accuracy of the model have been verified by performing various statistical analyses and using additional data that was not part of the data set used to develop the model. The trend analysis results have proven that the proposed LSTM-based model follows the correct relationships, indicating the model's reliability. Furthermore, the statistical analysis results have shown that the lowest average absolute percent relative error (AAPRE) is 8.422% and the highest correlation coefficient is 0.99. These values are much better than those given by the most accurate models in the literature.
- Universiti Teknologi Petronas Malaysia
- Universiti Teknologi MARA Malaysia
- Universiti Teknologi MARA Malaysia
PVT, Science Policy, Information Systems not elsewhere classified, petroleum engineering calculations, P b, Mathematical Sciences not elsewhere classified, trend analysis results, Reservoir Bubble Point Pressure, AAPRE, LSTM-based model, bubble point pressure, QD1-999, Deep Learning Approach, 006, Chemistry, data, correlation, trend analysis, Biological Sciences not elsewhere classified
PVT, Science Policy, Information Systems not elsewhere classified, petroleum engineering calculations, P b, Mathematical Sciences not elsewhere classified, trend analysis results, Reservoir Bubble Point Pressure, AAPRE, LSTM-based model, bubble point pressure, QD1-999, Deep Learning Approach, 006, Chemistry, data, correlation, trend analysis, Biological Sciences not elsewhere classified
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
