Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Sustainable Chemistry & Engineering
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Sustainable Chemistry & Engineering
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identifying Forage Sorghum Ideotypes for Advanced Biorefineries

Authors: Corinne D. Scown; Nawa Raj Baral; Nawa Raj Baral; Daniel H. Putnam; Daniel H. Putnam; Minliang Yang; Minliang Yang; +2 Authors

Identifying Forage Sorghum Ideotypes for Advanced Biorefineries

Abstract

Author(s): Yang, M; Dahlberg, J; Baral, NR; Putnam, D; Scown, CD | Abstract: Forage sorghum is a promising feedstock for the production of biofuels and bioproducts because it is drought tolerant, high-yielding, and familiar to farmers across the world. However, sorghum spans a diverse range of phenotypes, and it is unclear which are most desirable as bioenergy feedstocks. This paper explores four forage sorghum types, including brown-midrib (bmr), non-bmr, photoperiod sensitive (PS), and photoperiod insensitive (non-PS), from the perspective of their impact on minimum bioethanol selling price (MESP) at an ionic liquid pretreatment-based biorefinery. Among these types, there are tradeoffs between biomass yield, lignin content, and starch and sugar contents. High biomass-yielding PS varieties have previously been considered preferable for bioenergy production, but, if most starch and sugars from the panicle are retained during storage, use of non-PS sorghum may result in lower-cost biofuels (MESP of $1.26/L-gasoline equivalent). If advances in lignin utilization increase its value such that it can be dried and sold for $0.50/kg, the MESP for each scenario is lowered and non-bmr varieties become the most attractive option (MESP of $1.08/L-gasoline equivalent). While bmr varieties have lower lignin content, their comparatively lower biomass yield results in higher transportation costs that negate its fuel-yield advantage.

Country
United States
Keywords

bmr varieties, Environmental Science and Management, technoeconomic analysis, Plant Biology, lignin utilization increase, MESP, bioenergy, photoperiod, forage sorghum, Analytical Chemistry, Engineering, Chemical engineering, Affordable and Clean Energy, equivalent, Environmental Sciences not elsewhere classified, non-PS, ionic liquid pretreatment, feedstock, photoperiod sensitive, Pharmacology, Evolutionary Biology, High biomass-yielding PS varieties, Ecology, 660, starch, forage sorghum types, L-gasoline, lignin content, Chemical Engineering, Sorghum bicolor, Brown-midrib, biofuels, Advanced Biorefineries Forage sorghum, variety, Forage Sorghum Ideotypes, Chemical Sciences, biofuel, Analytical chemistry, Biotechnology, Developmental Biology, Biological Sciences not elsewhere classified

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities
Energy Research