Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Helvia - Repositorio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Sustainable Chemistry & Engineering
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Sustainable Chemistry & Engineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.60692/fn...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/xy...
Other literature type . 2022
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Catalyst-Based Synthesis of 2,5-Dimethylfuran from Carbohydrates as a Sustainable Biofuel Production Route

التخليق القائم على المحفز لثنائي ميثيل فوران 2،5 من الكربوهيدرات كطريق مستدام لإنتاج الوقود الحيوي
Authors: Anh Tuan Hoang; Ashok Pandey; Zuohua Huang; Rafael Luque; Kim Hoong Ng; Athanasios N. Papadopoulos; Wei‐Hsin Chen; +4 Authors

Catalyst-Based Synthesis of 2,5-Dimethylfuran from Carbohydrates as a Sustainable Biofuel Production Route

Abstract

Le développement des ressources en énergies renouvelables est vivement encouragé pour remédier à la pénurie d'énergies fossiles et aux problèmes de pollution qui y sont associés. La production d'énergie à partir de matériaux glucidiques a récemment suscité un grand intérêt en raison de la disponibilité, de la fiabilité et de l'abondance des sources de glucides. De manière significative, la transformation catalytique des glucides résiduels en biocarburants à base de furane, en particulier le 2,5-diméthylfurane (DMF), semble être une solution attrayante aux problèmes énergétiques et environnementaux susmentionnés. Le potentiel du DMF en tant que carburant renouvelable est prospectif, avec ses propriétés physico-chimiques similaires à celles des combustibles fossiles. Par conséquent, le travail actuel se concentre sur la production de DMF, les aspects importants pour un rendement accru en DMF étant résumés ici. Notamment, les catalyseurs importants dérivés de la zéolite, du métal noble, du métal non noble, du cadre organométallique et des matériaux électrocatalytiques sont discutés, ainsi que leurs effets sur la dérivation des glucides en DMF. En outre, les mécanismes de production de DMF ont également été clarifiés, suivis de l'examen minutieux des effets des conditions de réaction, des solvants et des donneurs d'hydrogène sur le rendement en DMF. Enfin, le processus de purification, le potentiel de commercialisation et la faisabilité économique de la production de DMF ont également été incorporés, des orientations futures perspicaces étant identifiées à la fin de notre examen. Cette revue devrait préconiser la production de DMF à partir de matériaux glucidiques, ce qui pourrait atténuer les problèmes énergétiques et environnementaux rencontrés actuellement.

Se insta encarecidamente al desarrollo de recursos energéticos renovables para recuperar la escasez de energía basada en fósiles y sus problemas de contaminación asociados. La producción de energía a partir de materiales de carbohidratos ha sido recientemente de gran interés debido a la disponibilidad, confiabilidad y abundancia de fuentes de carbohidratos. Significativamente, la transformación catalítica de los carbohidratos residuales en biocombustibles a base de furano, específicamente 2,5-dimetilfurano (DMF), parece ser una solución atractiva para los problemas energéticos y ambientales mencionados anteriormente. El potencial del DMF como combustible renovable es prospectivo, con sus propiedades fisicoquímicas similares a las de los combustibles fósiles. Por lo tanto, el trabajo actual se centra en la producción de DMF, resumiéndose en este documento los aspectos importantes para mejorar el rendimiento de DMF. En particular, se discuten los catalizadores significativos derivados de zeolita, metal noble, metal no noble, estructura metal-orgánica y materiales electrocatalíticos, junto con sus efectos en la derivación de carbohidratos a DMF. Además, también se aclararon los mecanismos de producción de DMF, seguidos del escrutinio de los efectos de las condiciones de reacción, los disolventes y los donantes de hidrógeno en el rendimiento de DMF. Finalmente, también se incorporaron el proceso de purificación, el potencial de comercialización y la viabilidad económica de la producción de DMF, y se identificaron direcciones futuras al final de nuestra revisión. Se espera que esta revisión defienda la producción de DMF a partir de materiales de carbohidratos, lo que podría aliviar los problemas energéticos y ambientales que se encuentran actualmente.

The development of renewable energy resources is strongly urged to recoup the shortage of fossil-based energy and its associated pollution issues. Energy production from carbohydrate materials has recently been of great interest due to the availability, reliability, and abundance of carbohydrate sources. Significantly, the catalytic transformation of waste carbohydrates into furan-based biofuels, specifically 2,5-dimethylfuran (DMF), appears to be an attractive solution to the aforementioned energy and environmental issues. The potential of DMF as a renewable fuel is prospective, with its physicochemical properties that are similar to those of fossil fuels. Therefore, the current work focuses on the production of DMF, with the important aspects for enhanced DMF yield being summarized herein. Notably, the significant catalysts derived from zeolite, noble-metal, non-noble-metal, metal–organic framework, and electrocatalytic materials are discussed, alongside their effects in deriving carbohydrates to DMF. Furthermore, the mechanisms of DMF production were clarified too, followed by the scrutinization of the effects from reaction conditions, solvents, and hydrogen donors onto the DMF yield. Finally, the purification process, commercialization potential, and economic feasibility of DMF production were incorporated too, with insightful future directions being identified at the end of our review. This review is expected to advocate DMF production from carbohydrate materials, which could alleviate the energy and environmental problems encountered presently.

ونحث بشدة على تطوير موارد الطاقة المتجددة لتعويض النقص في الطاقة الأحفورية وقضايا التلوث المرتبطة بها. كان إنتاج الطاقة من مواد الكربوهيدرات في الآونة الأخيرة ذا أهمية كبيرة بسبب توافر مصادر الكربوهيدرات وموثوقيتها ووفرتها. بشكل ملحوظ، يبدو أن التحول التحفيزي لنفايات الكربوهيدرات إلى وقود حيوي قائم على الفيوران، وتحديدًا 2،5 -ثنائي ميثيل فوران (DMF)، هو حل جذاب لقضايا الطاقة والبيئة المذكورة أعلاه. إمكانات DMF كوقود متجدد محتملة، مع خصائصها الفيزيائية والكيميائية التي تشبه خصائص الوقود الأحفوري. لذلك، يركز العمل الحالي على إنتاج DMF، مع تلخيص الجوانب المهمة لتعزيز عائد DMF هنا. ومن الجدير بالذكر أنه تمت مناقشة المحفزات الهامة المشتقة من الزيوليت والمعادن النبيلة وغير النبيلة والإطار المعدني العضوي والمواد التحفيزية الكهربائية، إلى جانب آثارها في اشتقاق الكربوهيدرات إلى DMF. علاوة على ذلك، تم توضيح آليات إنتاج DMF أيضًا، تليها التدقيق في التأثيرات الناتجة عن ظروف التفاعل والمذيبات والمتبرعين بالهيدروجين على عائد DMF. أخيرًا، تم دمج عملية التنقية وإمكانات التسويق والجدوى الاقتصادية لإنتاج DMF أيضًا، مع تحديد اتجاهات مستقبلية ثاقبة في نهاية مراجعتنا. من المتوقع أن تدعو هذه المراجعة إلى إنتاج DMF من مواد الكربوهيدرات، والتي يمكن أن تخفف من مشاكل الطاقة والبيئة التي تواجهها حاليًا.

Keywords

Biomass (ecology), Desulfurization Technologies for Fuels, Renewable energy, Economics, Macroeconomics, FOS: Mechanical engineering, Organic chemistry, Energy source, Oceanography, Environmental protection, Environmental pollution, Engineering, Materials for Electrochemical Supercapacitors, Business, Production (economics), Purification, Energy carrier, Marketing, Fossil fuel, Geology, Economic feasibility, Raw material, Electronic, Optical and Magnetic Materials, Chemistry, Reaction condition, Physical Sciences, 2,5-Dimethylfuran, Materials Science, Carbohydrates, Biomedical Engineering, FOS: Medical engineering, Catalysis, Environmental science, FOS: Economics and business, Biofuel, Catalyst system, Waste management, Mechanical Engineering, Commercialization, FOS: Earth and related environmental sciences, 540, Catalytic Conversion of Biomass to Fuels and Chemicals, Electrical engineering, Ultra-clean fuels, Conversion efficiency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 1%
Top 10%
Top 1%
Green
hybrid