
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Greenhouse Gas Footprint, Water-Intensity, and Production Cost of Bio-Based Isopentenol as a Renewable Transportation Fuel

Although ethanol remains the dominant liquid biofuel in the global market, there is a strong interest in high-energy density and low-hygroscopicity compounds that can be incorporated into gasoline at levels beyond the current ethanol blend wall. Isopentenol (3-methyl-3-buten-1-ol) is one of these promising advanced biofuels that is also an important precursor for isoprene (the main component of natural rubber). In this study, we model the production cost, greenhouse gas (GHG) emissions, and water footprint of biologically produced isopentenol, including the current state of the technology and the impact of potential improvements. We find that the minimum selling price of biobased isopentenol, given the current state of technology demonstrated at bench-scale, is $5.14/L-gasoline equivalent, and the GHG footprint exceeds that of gasoline. However, biobased isopentenol could reach a $0.62/L-gasoline equivalent [$2.4/gal-gasoline equivalent (gge), just 5% above the 10-year average gasoline price] in an optimized future case where yield and other process parameters are pushed to near their theoretical limits. In this future case, isopentenol could achieve a GHG reduction of 90% relative to gasoline and a carbon abatement cost of $9.3/metric ton CO2e. Reaching these goals will require dramatic improvements in isopentenol yield, near-100% recovery of ionic liquid used in pretreatment, and low-lignin and high-cellulose and-hemicellulose biomass feedstocks.
- Lawrence Berkeley National Laboratory United States
- University of Queensland Australia
- Lawrence Berkeley National Laboratory United States
- University of Queensland Australia
1500 Chemical Engineering, Sustainability and the Environment, 660, Conversion, Feedstock, 1600 Chemistry, Ionic Liquid, Pneumoniae, 2105 Renewable Energy, Biofuel Production, 2304 Environmental Chemistry, 1,3-Propanediol, Biomass, Sorghum, Pretreatment
1500 Chemical Engineering, Sustainability and the Environment, 660, Conversion, Feedstock, 1600 Chemistry, Ionic Liquid, Pneumoniae, 2105 Renewable Energy, Biofuel Production, 2304 Environmental Chemistry, 1,3-Propanediol, Biomass, Sorghum, Pretreatment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
