
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Static Magnetic Fields Enhancement of Saccharomyces cerevisae Ethanolic Fermentation

doi: 10.1021/bp034263j
pmid: 14763869
Magnetic effects induced in ethanolic fermentation by Saccharomyces cerevisiae strain DAUFPE-1012 were studied during a 24 h exposure to 220 mT steady magnetic fields (SMF) at 23 +/- 1 degrees C, produced by NdFeB rod magnets. The magnets were attached diametrically opposed (N to S) to a cylindrical tube reactor. The biomass growth in the reactor culture media (yeast extract + glucose 2%) during 24 h was monitored by measurements of optical density, which was correlated to cell dry weight. Ethanol concentration and glucose level were measured every 2 h. The pH of the culture media was maintained between 4 and 5. As a result, biomass (g/L) increased 2.5-fold and ethanol concentration 3.4-fold in magnetized cultures (n = 8) as compared with SMF nonexposed cultures (n = 8). Glucose consumption was higher in magnetized cultures, which correlated to the ethanol yield.
Ethanol, Cell Culture Techniques, Saccharomyces cerevisiae, Radiation Dosage, Bioreactors, Electromagnetic Fields, Glucose, Fermentation, Cell Division
Ethanol, Cell Culture Techniques, Saccharomyces cerevisiae, Radiation Dosage, Bioreactors, Electromagnetic Fields, Glucose, Fermentation, Cell Division
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
