Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Catalysis
Article . 2012 . Peer-reviewed
Data sources: Crossref
IRDB
Article
Data sources: IRDB
versions View all 2 versions
addClaim

Operando Time-Resolved X-ray Absorption Fine Structure Study for Surface Events on a Pt3Co/C Cathode Catalyst in a Polymer Electrolyte Fuel Cell during Voltage-Operating Processes

Authors: Oki Sekizawa; Tomoya Uruga; Yasuhiro Iwasawa; orcid Toshihiko Yokoyama;
Toshihiko Yokoyama
ORCID
Harvested from ORCID Public Data File

Toshihiko Yokoyama in OpenAIRE
Toshihiko Yokoyama; Takahiro Saida; Mizuki Tada; +8 Authors

Operando Time-Resolved X-ray Absorption Fine Structure Study for Surface Events on a Pt3Co/C Cathode Catalyst in a Polymer Electrolyte Fuel Cell during Voltage-Operating Processes

Abstract

The structural kinetics of surface events on a Pt3Co/C cathode catalyst in a polymer electrolyte fuel cell (PEFC) was investigated by operando time-resolved X-ray absorption fine structure (XAFS) with a time resolution of 500 ms. The rate constants of electrochemical reactions, the changes in charge density on Pt, and the changes in the local coordination structures of the Pt3Co alloy catalyst in the PEFC were successfully evaluated during fuel-cell voltage-operating processes. Significant time lags were observed between the electrochemical reactions and the structural changes in the Pt3Co alloy catalyst. The rate constants of all the surface events on the Pt3Co/C catalyst were significantly higher than those on the Pt/C catalyst, suggesting the advantageous behaviors (cell performance and catalyst durability) on the Pt3Co alloy cathode catalyst.

Keywords

PEFC, operando XAFS, fuel cell, Pt3Co catalyst, structural kinetics, time-resolved XAFS

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 10%
Top 10%
Top 1%
bronze