
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Environmentally Friendly Synthesis of γ-Valerolactone by Direct Catalytic Conversion of Renewable Sources

doi: 10.1021/cs501922e
Gamma-valerolactone is a valuable chemical that can be obtained by catalytic methods from nonedible vegetable biomass. However, the demand is felt for more environmentally friendly and cost-effective production processes. The topic is reviewed in this paper from the perspective of catalyst design. Focus is on those systems enabling one-pot reaction sequences in the liquid phase at low energy expenses and combining metal and acid sites, spanning, from homogeneous to heterogeneous catalysts. A final section is dedicated to continuous flow applications. The 230 references cover the most significant. achievements published in the literature from January 2011 to July 2014 and highlight critical issues and future trends.
synthesis, biomass, one-pot, gamma-valerolactone, sustainable
synthesis, biomass, one-pot, gamma-valerolactone, sustainable
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).177 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
