
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Simulation Study of Underground Coal Gasification in Alberta Reservoirs: Geological Structure and Process Modeling

doi: 10.1021/ef9013828
Underground coal gasification (UCG) as an efficient method for the conversion of the world’s coal resources into energy, liquid fuels, and chemicals has attracted lots of attention in recent years. This paper is concerned with a feasibility study of the UCG process for Alberta reservoirs using the three-dimensional simulation of this process based on a unique porous media approach. The proposed approach combines the effects of heat, mass transport, and chemical reactions to achieve this goal. The Computer Modeling Group (CMG) software STARS is used for simulation. The geological structure including coal and layers interspersed between coal seams (claystone layers), the porosity/permeability variation, and the chemical processes with corresponding parameters are considered in the model. Chemical stoichiometry coefficients of the pyrolysis process are calculated from proximate and extended experimental data. Genetic algorithm and pattern search are used for parameter estimation. This model is developed to s...
- University of Calgary Canada
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).81 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
