
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of a Complex Mixture of Therapeutic Drugs at Environmental Levels on Human Embryonic Cells

The potential risk associated with the presence of low levels of pharmaceuticals in aquatic environments is currently under debate. In this study we investigated the effects of 13 drugs merged to mimic both the association and low concentration (ng/L) profiles detected in the environment. The mixture comprised atenolol, bezafibrate, carbamazepine, cyclophosphamide, ciprofloxacin, furosemide, hydrochlorothiazide, ibuprofen, lincomycin, ofloxacin, ranitidine, salbutamol, and sulfamethoxazole. At environmental exposure levels, the drug mix inhibited the growth of human embryonic cells HEK293, with the highest effect observed as a 30% decrease in cell proliferation compared to controls. Pharmaceuticals activated stress-response signaling protein kinases (ERK1/2), and induced overexpression of glutathione-S-transferase P1 gene. No evidence was found for apoptosis or necrosis in HEK293 cells, although morphological changes were observed. The drug mixture effectively stimulated the expression of cell-cycle progression-mediating genes p16 and p21, with a slight accumulation of cells in the G2/M phase of the cell-cycle. Our results suggest that a mixture of drugs at ng/L levels can inhibit cells proliferation by affecting their physiology and morphology. This also suggests that water-borne pharmaceuticals can be potential effectors on aquatic life.
Gene Expression Regulation, Cell Cycle, Humans, Environmental Pollutants, Embryo, Mammalian, Cell Line
Gene Expression Regulation, Cell Cycle, Humans, Environmental Pollutants, Embryo, Mammalian, Cell Line
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).426 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
