Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Improved Calculation of the Exergy of Natural Resources for Exergetic Life Cycle Assessment (ELCA)

Authors: Bram De Meester; Jo Dewulf; Herman Van Langenhove; and Arnold Janssens;

An Improved Calculation of the Exergy of Natural Resources for Exergetic Life Cycle Assessment (ELCA)

Abstract

The focus in environmental research is shifting from emission abatement to critical process analysis, including assessment of resource consumption. The exergy theory offers a thermodynamic methodology to account for the consumption of natural resources. However, exergy data on mineral resources available in the literature are inadequate to apply to exergetic life cycle analysis, due to incompleteness, inconsistencies, and a dated thermochemical basis. An uncertainty assessment of the data has to be performed as well. In this work, three recent thermochemical databases were applied to evaluate the chemical exergy of 85 elements and 73 minerals, 21 of which had not yet been quantified in the literature. The process required the choice of a new reference species for aluminum. Muscovite was selected, giving rise to a chemical exergy of 809.4 kJ/mol for aluminum. The theory proved to be robust for the exergy of chemical elements, as exergy values differing by 1.2% on average from most recent literature were found. On the contrary, the exergy values for minerals differed by factors up to 14 from literature values, due to the application of recent thermochemical values and consistently selected reference species. The consistent dataset of this work will enable straightforward resource intake evaluation through an exergetic life cycle assessment.

Related Organizations
Keywords

Conservation of Natural Resources, Hot Temperature, Models, Statistical, Chemical Phenomena, Ecology, Temperature, Environment, Chemistry, Evaluation Studies as Topic, Reference Values, Thermodynamics, Fertilizers, Aluminum, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%