Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DLR publication serv...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DLR publication server
Other literature type . 2012
Environmental Science & Technology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global-Mean Temperature Change from Shipping toward 2050: Improved Representation of the Indirect Aerosol Effect in Simple Climate Models

Authors: Tronstad Lund, Marianne; Eyring, Veronika; Fuglestvedt, Jan; Hendricks, Johannes; Lauer, Axel; Lee, David; Righi, Mattia;

Global-Mean Temperature Change from Shipping toward 2050: Improved Representation of the Indirect Aerosol Effect in Simple Climate Models

Abstract

We utilize a range of emission scenarios for shipping to determine the induced global-mean radiative forcing and temperature change. Ship emission scenarios consistent with the new regulations on nitrogen oxides (NO(x)) and sulfur dioxide (SO(2)) from the International Maritime Organization and two of the Representative Concentration Pathways are used as input to a simple climate model (SCM). Based on a complex aerosol-climate model we develop and test new parametrizations of the indirect aerosol effect (IAE) in the SCM that account for nonlinearities in radiative forcing of ship-induced IAE. We find that shipping causes a net global cooling impact throughout the period 1900-2050 across all parametrizations and scenarios. However, calculated total net global-mean temperature change in 2050 ranges from -0.03[-0.07,-0.002]°C to -0.3[-0.6,-0.2]°C in the A1B scenario. This wide range across parametrizations emphasizes the importance of properly representing the IAE in SCMs and to reflect the uncertainties from complex global models. Furthermore, our calculations show that the future ship-induced temperature response is likely a continued cooling if SO(2) and NO(x) emissions continue to increase due to a strong increase in activity, despite current emission regulations. However, such cooling does not negate the need for continued efforts to reduce CO(2) emissions, since residual warming from CO(2) is long-lived.

Country
Germany
Keywords

Aerosols, Climate, Temperature, ship emissions, Models, Theoretical, climate change, climate models, aerosols

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%