Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrical Conductivity of Molten Fluoride–Chloride Electrolytes Containing K2SiF6 and SiO2

Authors: Yurii Zaikov; Alexey Apisarov; A. V. Isakov; A. A. Red’kin; Oleg V. Chemezov;

Electrical Conductivity of Molten Fluoride–Chloride Electrolytes Containing K2SiF6 and SiO2

Abstract

The electrical conductivity of fluoride–chloride electrolytes for solar silicon electrolysis was investigated using impedance spectroscopy. Electrolytes containing potassium fluoride, potassium chloride, cesium chloride, potassium hexafluorosilicate, and silicon oxide were studied. The influence of the electrolyte composition on the electrical conductivity was examined.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Average