Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High Capacity and Excellent Stability of Lithium Ion Battery Anode Using Interface-Controlled Binder-Free Multiwall Carbon Nanotubes Grown on Copper

Authors: Sung-Woo Oh; Sungjin Cho; Rajarshi Banerjee; Wonbong Choi; Wonbong Choi; Jun Y. Hwang; Yang-Kook Sun; +1 Authors

High Capacity and Excellent Stability of Lithium Ion Battery Anode Using Interface-Controlled Binder-Free Multiwall Carbon Nanotubes Grown on Copper

Abstract

We present a novel binder-free multiwall carbon nanotube (MWCNT) structure as an anode in Li ion batteries. The interface-controlled MWCNT structure, synthesized through a two-step process of catalyst deposition and chemical vapor deposition (CVD) and directly grown on a copper current collector, showed very high specific capacity, almost three times as that of graphite, excellent rate capability even at a charging/discharging rate of 3 C, and no capacity degradation up to 50 cycles. Significantly enhanced properties of this anode could be related to high Li ion intercalation on the carbon nanotube walls, strong bonding with the substrate, and excellent conductivity.

Related Organizations
Keywords

Nanotubes, Carbon, Equipment Design, Lithium, Equipment Failure Analysis, Electric Power Supplies, Energy Transfer, Materials Testing, Nanotechnology, Particle Size, Electrodes, Copper

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    187
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
187
Top 1%
Top 10%
Top 1%
Related to Research communities
Energy Research