
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes

The chemically reduced graphene oxide (rGO) was transferred onto polyethylene terephthalate (PET) substrates and then used as transparent and conductive electrodes for flexible organic photovoltaic (OPV) devices. The performance of the OPV devices mainly depends on the charge transport efficiency through rGO electrodes when the optical transmittance of rGO is above 65%. However, if the transmittance of rGO is less than 65%, the performance of the OPV device is dominated by the light transmission efficiency, that is, the transparency of rGO films. After the tensile strain (∼2.9%) was applied on the fabricated OPV device, it can sustain a thousand cycles of bending. Our work demonstrates the highly flexible property of rGO films, which provide the potential applications in flexible optoelectronics.
- Nanyang Technological University Singapore
Polyethylene Terephthalates, Electric Conductivity, Oxides, Electric Power Supplies, Electrochemistry, Solar Energy, Graphite, DRNTU::Engineering::Materials, Organic Chemicals, Electrodes, Oxidation-Reduction
Polyethylene Terephthalates, Electric Conductivity, Oxides, Electric Power Supplies, Electrochemistry, Solar Energy, Graphite, DRNTU::Engineering::Materials, Organic Chemicals, Electrodes, Oxidation-Reduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).552 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
