
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electrochemical Charging of CdSe Quantum Dot Films: Dependence on Void Size and Counterion Proximity

Films of colloidal quantum dots (QDs) show great promise for application in optoelectronic devices. Great advances have been made in recent years in designing efficient QD solar cells and LEDs. A very important aspect in the design of devices based on QD films is the knowledge of their absolute energy levels. Unfortunately, reported energy levels vary markedly depending on the employed measurement technique and the environment of the sample. In this report, we determine absolute energy levels of QD films by electrochemical charge injection. The concomitant change in optical absorption of the film allows quantification of the number of charges in quantum-confined levels and thereby their energetic position. We show here that the size of voids in the QD films (i.e., the space between the quantum dots) determines the amount of charges that may be injected into the films. This effect is attributed to size exclusion of countercharges from the electrolyte solution. Further, the energy of the QD levels depends on subtle changes in the QD film and the supporting electrolyte: the size of the cation and the QD ligand length. These nontrivial effects can be explained by the proximity of the cation to the QD surface and a concomitant lowering of the electrochemical potential. Our findings help explain the wide range of reported values for QD energy levels and redefine the limit of applicability of electrochemical measurements on QD films. Finally, the finding that the energy of QD levels depends on ligand length and counterion size may be exploited in optimized designs of QD sensitized solar cells.
- Utrecht University Netherlands
- Delft University of Technology Netherlands
- Free University of Amsterdam Pure VU Amsterdam Netherlands
- Vrije Universiteit Amsterdam Netherlands
electrochemical charging, quantum dot, spectroelectrochemistry, SDG 10 - Reduced Inequalities, layer by layer, ligand, energy level, surface functionalization
electrochemical charging, quantum dot, spectroelectrochemistry, SDG 10 - Reduced Inequalities, layer by layer, ligand, energy level, surface functionalization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).59 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
