Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied E...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Applied Electrochemistry
Article . 1998 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A study of current distribution in a DEM cell during bromate formation

Authors: Keith Scott; B. R. Williams; W. Taama;

A study of current distribution in a DEM cell during bromate formation

Abstract

The anodic oxidation of potassium bromide to potassium bromate is performed in an undivided cell with hydrogen evolution the major reaction at the counter electrode. The cell used is a dished electrode membrane (DEM) cell. Current density distribution, measured using a segmented electrode, shows a variation in the two principle dimensions; along the length of the electrode and over the width of the electrode. Current densities are highest at the electrolyte flow inlet and also exhibit a localized maximum along the electrode length. The variation in current density is due to the influence of electrolytic gas evolution on the effective electrolyte conductivity and mass transport and also due to the change in shape of the dished electrode, which influences mass transport, electrical potential field and flow at the cell inlet and exit.

Powered by OpenAIRE graph
Found an issue? Give us feedback