Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horizon / Pleins tex...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Horizon / Pleins textes
Other literature type . 2003
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2003
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-UPMC
Article . 2003
Data sources: HAL-UPMC
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S

Authors: Francou, Bernard; Vuille, Mathias; Wagnon, Patrick; Mendoza, Javier; Sicart, Jean-Emmanuel;

Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S

Abstract

The reasons for the accelerated glacier retreat observed since the early 1980s in the tropical Andes are analyzed based on the well‐documented Chacaltaya glacier (Bolivia). Monthly mass balance measurements available over the entire 1991–2001 decade are interpreted in the light of a recent energy balance study performed on nearby Zongo glacier and further put into a larger‐scale context by analyzing the relationship with ocean‐atmosphere dynamics over the tropical Pacific‐South American domain. The strong interannual variability observed in the mass balance is mainly dependent on variations in ablation rates during the austral summer months, in particular during DJF. Since high humidity levels during the summer allow melting to be distinctly predominant over sublimation, net all‐wave radiation, via albedo and incoming long‐wave radiation, is the main factor that governs ablation. Albedo depends on snowfall and a deficit during the transition period and in the core of the wet season (DJF) maintains low albedo surfaces of bare ice, which in turn leads to enhanced absorption of solar radiation and thus to increased melt rates. On a larger spatial scale, interannual glacier evolution is predominantly controlled by sea surface temperature anomalies (SSTA) in the eastern equatorial Pacific (Niño 1+2 region). The glacier mass balance is influenced by tropical Pacific SSTA primarily through changes in precipitation, which is significantly reduced during El Niño events. The more frequent occurrence of El Niño events and changes in the characteristics of its evolution, combined with an increase of near‐surface temperature in the Andes, are identified as the main factors responsible for the accelerated retreat of Chacaltaya glacier.

Country
France
Keywords

VARIATION SAISONNIERE, 550, Andes, Meteorology and Atmospheric Dynamics: Tropical meteorology, [SDU] Sciences of the Universe [physics], RETRAIT DE GLACIER, Earth Science, glacier mass balance, EL NINO, TEMPERATURE DE SURFACE, Hydrology: Snow and ice (1827), Hydrology: Glaciology (1863), BILAN DE MASSE, climate dynamics, Global Change: Climate dynamics (3309), VARIATION INTERANNUELLE, climate change, [SDU]Sciences of the Universe [physics], CLIMAT, PRECIPITATION, CHANGEMENT CLIMATIQUE, GLACIER, tropical glaciers, ENSO

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    186
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
186
Top 1%
Top 1%
Top 1%
Green