
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The role of historical fire disturbance in the carbon dynamics of the pan‐boreal region: A process‐based analysis

handle: 1912/3505
Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process‐based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45°N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO2 concentration and climate. Our analysis indicates that fire plays an important role in interannual and decadal scale variation of source/sink relationships of northern terrestrial ecosystems and also suggests that atmospheric CO2 may be important to consider in addition to changes in climate and fire disturbance. There are substantial uncertainties in the effects of fire on carbon storage in our simulations. These uncertainties are associated with sparse fire data for northern Eurasia, uncertainty in estimating carbon consumption, and difficulty in verifying assumptions about the representation of fires that occurred prior to the start of the historical fire record. To improve the ability to better predict how fire will influence carbon storage of this region in the future, new analyses of the retrospective role of fire in the carbon dynamics of northern high latitudes should address these uncertainties.
- Max Planck Society Germany
- Purdue University West Lafayette United States
- Max Planck Institute of Neurobiology Germany
- University of Maryland, Baltimore United States
- Purdue University West Lafayette United States
High-latitudes, Fire emissions, 550, Ecosystem modeling, Russian forests, Scots pine forests, Net primary productivity, Terrestrial biosphere models, Satellite data, Canadian forest-fires, Soil thermal dynamics, Atmospheric CO2, Climate change, Boreal carbon dynamics
High-latitudes, Fire emissions, 550, Ecosystem modeling, Russian forests, Scots pine forests, Net primary productivity, Terrestrial biosphere models, Satellite data, Canadian forest-fires, Soil thermal dynamics, Atmospheric CO2, Climate change, Boreal carbon dynamics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).168 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
