
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A mechanistic treatment of the dominant soil nitrogen cycling processes: Model development, testing, and application

doi: 10.1029/2007jg000578
The development and initial application of a mechanistic model (TOUGHREACT‐N) designed to characterize soil nitrogen (N) cycling and losses are described. The model couples advective and diffusive nutrient transport, multiple microbial biomass dynamics, and equilibrium and kinetic chemical reactions. TOUGHREACT‐N was calibrated and tested against field measurements to assess pathways of N loss as either gas emission or solute leachate following fertilization and irrigation in a Central Valley, California, agricultural field as functions of fertilizer application rate and depth, and irrigation water volume. Our results, relative to the period before plants emerge, show that an increase in fertilizer rate produced a nonlinear response in terms of N losses. An increase of irrigation volume produced NO2− and NO3− leaching, whereas an increase in fertilization depth mainly increased leaching of all N solutes. In addition, nitrifying bacteria largely increased in mass with increasing fertilizer rate. Increases in water application caused nitrifiers and denitrifiers to decrease and increase their mass, respectively, while nitrifiers and denitrifiers reversed their spatial stratification when fertilizer was applied below 15 cm depth. Coupling aqueous advection and diffusion, and gaseous diffusion with biological processes, closely captured actual conditions and, in the system explored here, significantly clarified interpretation of field measurements.
- Lawrence Berkeley National Laboratory United States
- United States Department of the Interior United States
- Agricultural Research Service United States
- University of California, Berkeley United States
- University of North Texas United States
Nitrogen, Testing, Diffusion, Biomass, Gaseous Diffusion, Fertilizers, Irrigation, Solutes, Bacteria, Chemical Reactions, 58, Nutrients, Leachates, 54, Kinetics, Fertilization, Leaching, Advection, Soils, Stratification
Nitrogen, Testing, Diffusion, Biomass, Gaseous Diffusion, Fertilizers, Irrigation, Solutes, Bacteria, Chemical Reactions, 58, Nutrients, Leachates, 54, Kinetics, Fertilization, Leaching, Advection, Soils, Stratification
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).100 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
