
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Emissions of greenhouse gases from a North American megacity

doi: 10.1029/2009gl039825
Atmospheric column abundances of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4) and nitrous oxide (N2O) have been measured above the South Coast air basin (SCB), a densely populated urban region of Southern California, USA, which includes Los Angeles and the surrounding suburbs. Large diurnal variations in CO and CH4 are observed which correlate well with those in CO2. Weaker correlations are seen between N2O and CO2, with large uncertainties. We compute yearly SCB emissions of CO and CH4 to be 1.4 ± 0.3 Tg CO and 0.6 ± 0.1 Tg CH4. We compare our calculated emissions to the California Air Resources Board (CARB) and the Emission Database for Global Atmospheric Research (EDGAR) estimates. Our measurements confirm that urban emissions are a significant source of CH4 and in fact may be substantially higher than currently estimated. If our emissions are typical of other urban centers, these findings suggest that urban emissions could contribute 7–15% to the global anthropogenic budget of methane.
- California Institute of Technology United States
- Jet Propulsion Lab United States
- National Aeronautics and Space Administration United States
550, greenhouse gas, methane, 551, urban
550, greenhouse gas, methane, 551, urban
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).204 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
