
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modification of inertial oscillations by the mesoscale eddy field

doi: 10.1029/2009jc005679
The modification of near‐surface near‐inertial oscillations (NIOs) by the geostrophic vorticity is studied globally from an observational standpoint. Surface drifter are used to estimate NIO characteristics. Despite its spatial resolution limits, altimetry is used to estimate the geostrophic vorticity. Three characteristics of NIOs are considered: the relative frequency shift with respect to the local inertial frequency; the near‐inertial variance; and the inverse excess bandwidth, which is interpreted as a decay time scale. The geostrophic mesoscale flow shifts the frequency of NIOs by approximately half its vorticity. Equatorward of 30°N and S, this effect is added to a global pattern of blue shift of NIOs. While the global pattern of near‐inertial variance is interpretable in terms of wind forcing, it is also observed that the geostrophic vorticity organizes the near‐inertial variance; it is maximum for near zero values of the Laplacian of the vorticity and decreases for nonzero values, albeit not as much for positive as for negative values. Because the Laplacian of vorticity and vorticity are anticorrelated in the altimeter data set, overall, more near‐inertial variance is found in anticyclonic vorticity regions than in cyclonic regions. While this is compatible with anticyclones trapping NIOs, the organization of near‐inertial variance by the Laplacian of vorticity is also in very good agreement with previous theoretical and numerical predictions. The inverse bandwidth is a decreasing function of the gradient of vorticity, which acts like the gradient of planetary vorticity to increase the decay of NIOs from the ocean surface. Because the altimetry data set captures the largest vorticity gradients in energetic mesoscale regions, it is also observed that NIOs decay faster in large geostrophic eddy kinetic energy regions.
- National Oceanography Centre United Kingdom
- National Oceanic and Atmospheric Administration United States
- Atlantic Oceanographic and Meteorological Laboratory United States
- Universidad de Los Andes Colombia
- Atlantic Oceanographic and Meteorological Laboratory United States
CURRENTS, MODELS, MESOSCALE PROCESSES, PROPAGATION, 551, 532, SPECTRUM, UPPER OCEAN, EDDIES, TURBULENT DIFFUSION, WIND, Marine Sciences, Inertial, DRIFTER DATA, VARIABILITY, KINETIC ENERGY, Mesoscale, INTERNAL WAVES, Drifter
CURRENTS, MODELS, MESOSCALE PROCESSES, PROPAGATION, 551, 532, SPECTRUM, UPPER OCEAN, EDDIES, TURBULENT DIFFUSION, WIND, Marine Sciences, Inertial, DRIFTER DATA, VARIABILITY, KINETIC ENERGY, Mesoscale, INTERNAL WAVES, Drifter
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).77 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
