
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Simulation of the Indian Ocean Dipole: A relevant criterion for selecting models for climate projections

doi: 10.1029/2010gl046242
A multi-model average shows that 21st century warming over the eastern Indian Ocean (IO) is slower than that to the west, but with strong inter-model variations. Is the simulation of the Indian Ocean Dipole (IOD) relevant to the inter-model variations? We demonstrate that inter-model variations of this future warming are consistent with how well models simulate historical IOD properties; models with a stronger IOD amplitude systematically produce a slower eastern IO warming rate with greater future rainfall changes in IOD-affected regions. These models also produce a stronger Bjerknes-like positive feedback, involving sea surface temperatures (SSTs), winds and a shoaling thermocline in the eastern IO. As warming proceeds, models with a stronger positive feedback induce a greater response to warming-induced changes such as easterly trends associated with the Walker circulation, generating a smaller warming in the eastern IO. Simulating the present-day IOD properties is, therefore, a relevant criterion for selecting models for climate projections.
- CSIRO Marine and Atmospheric Research Australia
- CSIRO Ocean and Atmosphere Australia
- University of Southern Queensland Australia
- Commonwealth Scientific and Industrial Research Organisation Australia
- University of Southern Queensland Australia
climate change, climate models, rainfall, global warming, 551, Indian Ocean, Walker circulation
climate change, climate models, rainfall, global warming, 551, Indian Ocean, Walker circulation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
