Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Biogeosciences
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Seasonal Sources of Whole‐Lake CH4 and CO2 Emissions From Interior Alaskan Thermokarst Lakes

Authors: E. D. Crook; Jennifer Walker; K. M. Walter Anthony; B. Lam; Claudia I. Czimczik; Xiaomei Xu; M. Schweiger; +2 Authors

Seasonal Sources of Whole‐Lake CH4 and CO2 Emissions From Interior Alaskan Thermokarst Lakes

Abstract

AbstractThe lakes that form via ice‐rich permafrost thaw emit CH4 and CO2 to the atmosphere from previously frozen ancient permafrost sources. Despite this potential to positively feedback to climate change, lake carbon emission sources are not well understood on whole‐lake scales, complicating upscaling. In this study, we used observations of radiocarbon (14C) and stable carbon (13C) isotopes in the summer and winter dissolved CH4 and CO2 pools, ebullition‐CH4, and multiple independent mass balance approaches to characterize whole‐lake emission sources and apportion annual emission pathways. Observations focused on five lakes with variable thermokarst in interior Alaska. The 14C age of discrete ebullition‐CH4 seeps ranged from 395 ± 15 to 28,240 ± 150 YBP across all study lakes; however, dissolved 14CH4 was younger than 4,730 YBP. In the primary study lake, Goldstream L., the integrated whole‐lake 14C age of ebullition‐CH4, as determined by three different approaches, ranged from 3,290 to 6,740 YBP. A new dissolved‐14C‐CH4‐based approach to estimating ebullition 14C age and flux showed close agreement to previous ice‐bubble surveys and bubble‐trap flux estimates. Differences in open water versus ice‐covered dissolved gas concentrations and their 14C and 13C isotopes revealed the influence of winter ice trapping and forcing ebullition‐CH4 into the underlying water column, where it comprised 50% of the total dissolved CH4 pool by the end of winter. Across the study lakes, we found a relationship between the whole‐lake 14C age of dissolved CH4 and CO2 and the extent of active thermokarst, representing a positive feedback system that is sensitive to climate warming.

Country
United States
Keywords

550, thermokarst, methane, carbon dioxide, Climate Action, climate change, Geophysics, lakes, radiocarbon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
Green
bronze