Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Geophysical Research Biogeosciences
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Biogeosciences
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Carbon Thaw Rate Doubles When Accounting for Subsidence in a Permafrost Warming Experiment

Authors: E. Pegoraro; J. Ledman; J. Ledman; Heidi Rodenhizer; César Plaza; M. Taylor; M. Taylor; +6 Authors

Carbon Thaw Rate Doubles When Accounting for Subsidence in a Permafrost Warming Experiment

Abstract

AbstractPermafrost thaw is typically measured with active layer thickness, or the maximum seasonal thaw measured from the ground surface. However, previous work has shown that this measurement alone fails to account for ground subsidence and therefore underestimates permafrost thaw. To determine the impact of subsidence on observed permafrost thaw and thawed soil carbon stocks, we quantified subsidence using high‐accuracy GPS and identified its environmental drivers in a permafrost warming experiment near the southern limit of permafrost in Alaska. With permafrost temperatures near 0°C, 10.8 cm of subsidence was observed in control plots over 9 years. Experimental air and soil warming increased subsidence by five times and created inundated microsites. Across treatments, ice and soil loss drove 85–91% and 9–15% of subsidence, respectively. Accounting for subsidence, permafrost thawed between 19% (control) and 49% (warming) deeper than active layer thickness indicated, and the amount of newly thawed carbon within the active layer was between 37% (control) and 113% (warming) greater. As additional carbon thaws as the active layer deepens, carbon fluxes to the atmosphere and lateral transport of carbon in groundwater could increase. The magnitude of this impact is uncertain at the landscape scale, though, due to limited subsidence measurements. Therefore, to determine the full extent of permafrost thaw across the circumpolar region and its feedback on the carbon cycle, it is necessary to quantify subsidence more broadly across the circumpolar region.

Country
United States
Keywords

Climate Action, climate change, Arctic, tundra, Geophysics, carbon, permafrost

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green
hybrid