Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Resources Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Research
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Resources Research
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combined Modeling of US Fluvial, Pluvial, and Coastal Flood Hazard Under Current and Future Climates

Authors: Gaia Olcese; Kelly E. McCusker; Kerry Emanuel; James Savage; A. Hamidi; Celso M. Ferreira; Arslaan Khalid; +24 Authors

Combined Modeling of US Fluvial, Pluvial, and Coastal Flood Hazard Under Current and Future Climates

Abstract

AbstractThis study reports a new and significantly enhanced analysis of US flood hazard at 30 m spatial resolution. Specific improvements include updated hydrography data, new methods to determine channel depth, more rigorous flood frequency analysis, output downscaling to property tract level, and inclusion of the impact of local interventions in the flooding system. For the first time, we consider pluvial, fluvial, and coastal flood hazards within the same framework and provide projections for both current (rather than historic average) conditions and for future time periods centered on 2035 and 2050 under the RCP4.5 emissions pathway. Validation against high‐quality local models and the entire catalog of FEMA 1% annual probability flood maps yielded Critical Success Index values in the range 0.69–0.82. Significant improvements over a previous pluvial/fluvial model version are shown for high‐frequency events and coastal zones, along with minor improvements in areas where model performance was already good. The result is the first comprehensive and consistent national‐scale analysis of flood hazard for the conterminous US for both current and future conditions. Even though we consider a stabilization emissions scenario and a near‐future time horizon, we project clear patterns of changing flood hazard (3σ changes in 100 years inundated area of −3.8 to +16% at 1° scale), that are significant when considered as a proportion of the land area where human use is possible or in terms of the currently protected land area where the standard of flood defense protection may become compromised by this time.

Countries
United Kingdom, Netherlands, Netherlands
Keywords

550, 551, United States, climate change, inundation, floods, SDG 13 - Climate Action

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    184
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
184
Top 0.1%
Top 10%
Top 0.1%
Green
hybrid