
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Opposing Effects of Climate and Permafrost Thaw on CH4 and CO2 Emissions From Northern Lakes

AbstractSmall, organic‐rich lakes are important sources of methane (CH4) and carbon dioxide (CO2) to the atmosphere, yet the sensitivity of emissions to climate warming is poorly constrained and potentially influenced by permafrost thaw. Here, we monitored emissions from 20 peatland lakes across a 1,600 km permafrost transect in boreal western Canada. Contrary to expectations, we observed a shift from source to sink of CO2 for lakes warmer regions, driven by greater primary productivity associated with greater hydrological connectivity to lakes and nutrient availability in the absence of permafrost. Conversely, an 8‐fold increase in CH4 emissions in warmer regions was associated with water temperature and shifts in microbial communities and dominant anaerobic processes. Our results suggest that the net radiative forcing from altered greenhouse gas emissions of northern peatland lakes this century will be dominated by increasing CH4 emissions and only partially offset by reduced CO2 emissions.
- University of Alberta Canada
- University of New Hampshire United States
- University of Cambridge United Kingdom
- University System of New Hampshire United States
- Universidade de São Paulo Brazil
Naturgeografi, aquatic, climate warming, Physical Geography, greenhouse gas, greenhouse gas; aquatic; permafrost; lakes; climate warming, lakes, permafrost
Naturgeografi, aquatic, climate warming, Physical Geography, greenhouse gas, greenhouse gas; aquatic; permafrost; lakes; climate warming, lakes, permafrost
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
