Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth's Futurearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2022 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2022
Data sources: VIRTA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2022
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impacts of Future Climate Change and Atmospheric CO2 Concentration on Ecosystem Water Retention Service

Authors: Yin, Lichang; Tao, Fulu; Zhai, Ran; Chen, Yi; Hu, Jian; Wang, Zhenghui; Fu; +1 Authors

Impacts of Future Climate Change and Atmospheric CO2 Concentration on Ecosystem Water Retention Service

Abstract

AbstractTerrestrial ecosystem water retention (TEWR) service is subject to climate change and elevated atmospheric carbon dioxide concentration (eCO2), however, the relevant processes by which future climate change and eCO2 affect TEWR are poorly understood. Here, we use the factorial simulation experiments from the Inter‐Sectoral Impact Model Intercomparison Project to address this research question. The experiments are based on three dynamic global vegetation models forced with the same climate change scenarios. Results suggest that compared to the preindustrial level, during 2070–2099, (a) TEWR change is highly uncertain, especially in the Southern Hemisphere. (b) Climate change will dominate the pattern of future TEWR change compared with eCO2. (c) Precipitation and runoff change will dominate the future TEWR change in various regions, and the direct role of evapotranspiration (ET) on TEWR will be relatively small. (d) eCO2 will mainly affect vegetation dynamics in energy‐limited regions to affect the runoff, and consequently affecting TEWR change. (e) eCO2 will decrease ET and increase the runoff, resulting in a slight TWER change. These findings improve the understanding of the responses of TEWR to future climate change and eCO2.

Country
Finland
Keywords

leaf area index evapotranspiration, 550, Ecology, ta1172, carbon dioxide, runoff, Ecosystem Water Retention Service, plant functional types, 551, Environmental sciences, dynamic global vegetation models, Climate change, GE1-350, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold