Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth's Futurearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Urbanization Contributes Little to Global Warming but Substantially Intensifies Local and Regional Land Surface Warming

Authors: Decheng Zhou; Jingfeng Xiao; Steve Frolking; Liangxia Zhang; Guoyi Zhou;

Urbanization Contributes Little to Global Warming but Substantially Intensifies Local and Regional Land Surface Warming

Abstract

AbstractIncreasing urbanization causes an urban heat island (UHI) effect and exacerbates health risks of heat waves due to global warming. The surface UHI (SUHI) in large cities has been extensively studied, yet a systematic evaluation on the impacts of urbanization on local‐to global‐scale land surface warming is lacking. We propose a new procedure to quantify the warming effects of urbanization at local, regional, and global scales using high‐resolution satellite observations. We find strong local warming effects for 88% of the urban‐dominated pixels across the globe and cooling effects for the rest of the urban lands on a diurnal mean timescale, with a global urban mean intensity of 1.1°C in 2015. The SUHI effects differ substantially by time of day, season, and climate zone, and are closely related to surface evapotranspiration. By extending local effects to the entire land surface, we estimate a diurnal mean warming of only 0.008°C globally. However, urbanization can have large warming effects regionally, especially in eastern China, the eastern United States, and Europe. In addition, we show that global urban expansion results in over three‐quarters of SUHI effects in 1985–2015, and its effect will likely increase by 50%–200% by the end of this century. The SUHI‐added warming could be up to 0.12°C in summer in Europe by 2100 under a fossil‐fueled development pathway. Our results reveal that urbanization substantially intensifies local and regional land surface warming and that prioritized attention should be given to the SUHI‐added warming in highly or rapidly urbanized regions.

Keywords

land use change, Ecology, land surface temperature, biophysical effects, urban heat island, Environmental sciences, climate change, GE1-350, QH540-549.5, urban expansion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 1%
gold