
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mechanisms Controlling Carbon Sinks in Semi‐Arid Mountain Ecosystems

doi: 10.1029/2021gb007186
AbstractFeedbacks between the intertwined water and carbon cycles in semi‐arid mountain ecosystems can introduce large uncertainties into projections of carbon storage. In this study, we sought to understand the influence of key mechanisms on carbon balances, focusing on an ecosystem whose complex terrain and large interannual variability in precipitation adds to its vulnerability to warming. We applied a dynamic vegetation‐ecosystem model (Lund‐Potsdam‐Jena General Ecosystem Simulator) to simulate water‐carbon interactions in the 104,512 km2 Mediterranean‐climate ecosystems of California's Sierra Nevada for 1950–2099. Our 48 scenarios include a combination of carbon dioxide (CO2) increase, air temperature change, and varying plant rooting depths. We found that with warming (+2 and +5°C), water limitations on growth and enhanced soil respiration reduce carbon storage; however, CO2 fertilization and associated enhanced water‐use efficiency offset this loss. Using the 4 km model resolution to capture steep mountain precipitation gradients, plus accounting for the several meters of actual root‐accessible water storage in the region, were also important. With warming accompanied by CO2 fertilization our projections show that the Sierra Nevada sequestering at least 200 Tg (2 kg m−2) carbon, versus carbon loss with warming alone. The increase reflects coniferous forests growing at high elevations, and some increase in broadleaved forests at low‐to‐intermediate elevations. Importantly, uncertainty in fire disturbance could shift our finding from carbon sink to source. The improved mechanistic understanding of these feedbacks can advance modeling of carbon‐water interactions in mountain‐ecosystem under a warmer and potentially drier climate.
- Lund University Sweden
- University of California Division of Agriculture and Natural Resources United States
- Beijing Normal University China (People's Republic of)
- University of California, Merced United States
- University of California Division of Agriculture and Natural Resources United States
Climate Action, climate change, Geochemistry, 550, carbon sink, rooting depth, Meteorology & Atmospheric Sciences, carbon dioxide enrichment, Oceanography, Atmospheric Sciences
Climate Action, climate change, Geochemistry, 550, carbon sink, rooting depth, Meteorology & Atmospheric Sciences, carbon dioxide enrichment, Oceanography, Atmospheric Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
